MODULE 2 FOUNDATIONS OF COMPUTING

CREDIT POINTS 10

STATUS Core

ASSESSMENT Continuous Assessment 60%
Examination 40%

TOTAL CONTACT HOURS: 96
Lecture: 72 Practical:
Tutorial: 24 Other:

TOTAL STUDENT EFFORT: 200

Aims

This module will teach you to calculate using discrete structures. These structures form the basis of every
computer system. You will learn how to represent problems in a mathematical language that allows
effective reasoning. You will learn how to manipulate these structures so as to generate efficient solutions
to these problems.

You will also learn of the limits of the computer, those problems that the computer needs vast amounts of
time to solve, and those problems that current computational models will never be able to solve. You will

learn

of suggested techniques and models that may overcome (or at least reduce) these limits such as

randomisation, parallelism, quantum computing, and molecular computing.

Learning Outcomes

Upon

1.
2.

successful completion of this module, you should be able to:

solve simple problems effectively using a selection of algorithmic techniques such as invariants
reason algebraically in a calculational style with Boolean expressions

use concepts and notations of discrete maths to formulate simple models and reason about
them by calculation

apply calculational techniques effectively to a selection of problem domains in computing

explain using vivid examples the underlying ideas of computation, and outline how they can be
modelled mathematically

implement programs to solve certain mathematical problems



Indicative Content

Topic

Description

Introduction and

Why study foundations? The power of mathematical thinking. How

motivation mathematics ‘works’. Simple motivational case studies.

Algorithmics Informal but rigorous exploration of notions of algorithm, computational
process, program, programming language, programming, specification,
correctness, efficiency, unsolvability, intractability, classes P and NP,
parallelism, randomization, quantum computing, molecular computing.

Algorithmic Invariants, exploiting symmetry, case studies (e.g. knights and knaves,

problem solving

river crossing, games).

Review of Expressions, constants, variables, operators, parenthesisation, expression
algebra ‘trees’, operator precedence, order of association, datatypes.
‘Laws’ of Algebra. Exercises in algebraic manipulation. Calculational
format. Importance of explanatory hints.
Predicate Boolean operators, laws, quantification. Extensive exercises in algebraic
calculus calculation. Formulating English statements as Boolean expressions.
Discrete Sets, relations, functions, sequences, bags, numbers, graphs. Algebraic

mathematics:
modelling and
calculation

laws.

Formulating things using these concepts and notations. Reasoning (by
calculation) about ‘models’. Comparing alternative ‘models’ by
calculation. Structuring large formulas.

Implementation
of mathematics

Elements of functional programming. Expressions. Definitions.
Evaluation. Lazy versus eager evaluation. Pattern matching.




